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SUMMARY

Low Cycle Fatigue (LCF) in engine components involves macroscopic
cyclic plastic strains (with a stress-strain hysteresis loop) over a significant
portion of the failure region. Characterising elasto-plastic behaviour in
potential failure regions is a necessary step in estimating LCF life.

The equations governing elasto plastic behaviour are summarized,
and the methods of implementing them in Finite Element (FE) stress analysis
programs discussed.

An extension of the PAFEC program to include mixed isotropic-
kinematic hardening is outlined, and verified by examples for which
alternative FE solutions were available.

A sample application has been made to holes in a plate with biaxial
stress fields similar to those in disc webs, and the results compared with the
Neuber and modified Stowell rules commonly used for design life estimation;
these rules tend to overestimate the strain in biaxial stress conditions, leading
to conservative life estimates. /3
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NOTATION

General
A area
c kinematic hardening coefficient
E Young's modulus
f yield function
F force
g, h section dimensions
G shear modulus
H plastic slope
K stress or strain concentration factor
M moment
V shear force
Vol volume
r radius or radial coordinate
8 arc distance
z linear coordinate
u displacement
a rotation of face
$ rotation derivative
c strain
7y shear strain
X shape coefficient for shear deflection
A proportionality constant
A kinematic hardening constant
V Poisson's ratio
0 angular coordinate
p isotropic fraction in mixed hardening
e' stress
w total rotation

Tensors

C elastic or plastic constitutive tensor
J tensor invariant
a deviatoric stress tensor
A translated stress deviator
a translation of stress origin
6 Kronecker delta
c strain tensor
a stress tensor

Matrices or Vectors
B strain - displacement transformation matrix
D stress - strain constitutive matrix
F load vector
u displacement vector
f strain vector
6 stress vector

• , , a III I i



Subscripts or Superscripts

A applied loads
E elastic
P plastic
y current yield condition
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1. INTRODUCTION
As engine power and speed is varied in an aircraft turbine engine, vital components

are subject to changes in thermal and mechanical loading. Each flight includes one major
start-stop cycle, plus lesser cycles depending on the manner of operation of the engine.
High stress levels are used in many components to achieve lightness and consequent
high specific output, and cyclic variation of stresses in the components leads ultimately
to cracking at critical stress locations, with failure by the process of low cycle fatigue
(LCF).

There are no practical or economic means of determining by inspection when the
LCF life of components is exhausted, so accurate and reliable means of life estimation
are needed. Three categories of data are required for LCF life prediction:
(i) The loading history, preferably obtained from operational records for the engine,
alternatively derived from simulation or estimates.
(ii) Modelling and analytical methods which use the operational loading to produce
the history of stress, strain (and temperature where relevant) at critical locations in
components where failure may originate.
(iii) A damage accumulation criterion, so the cumulative effect of loading cycles can
be quantified and a measure of fatigue damage provided. This may be related either
to the life to crack initiation (for safe life estimates), or to estimated crack propagation
rate (in damage tolerant design using fracture mechanics methods).

Thermodynamic and heat flow analyses of engine operational data are used to de-
ermine generalised loadings, including pressures, metal temperatures and rotor speeds.

Finite clement (FE) models handle the complex boundary shapes commonly found in
practical components, so FE computer programs are generally used for determination
of detailed temperature, stress and strain distributions.

Since LCF by definition is characterised by macroscopic cyclic plastic strains mani-
fested by a stress-strain hysteresis loop over a significant portion of the failure region, a
material model incorporating cyclic plastic behaviour is required. Predicted stress and
strain values depend on plastic properties of the material. Further, when the component
is unloaded, plastic behaviour leaves residual stresses which also influence fatigue life.

High cycle fatigue life predictions are based on elastic stress estimates (Basquin law),
but strain amplitude is regarded as the best parameter for predicting LCF life. Total
strain values (elastic plus plastic) are used in the Coffin-Manson equation i , adopted
almost universally for LCF prediction. Hence characterising elasto-plastic behaviour in
potential failure regions is a necessary step in estimating LCF life.

This report summarises the equations governing elasto-plastic behaviour, indicates
how they are implemented in FE stress analysis programs, evaluates and compares FE
packages available at ARL, describes the extension of the PAFEC program at ARL
to include mixed isotropic kinematic hardening, and gives applications of FE elasto-
plastic analysis tnder loading resembling engine components, comparing results with
the commonly used Neuber and Stowell approximations.

2. CYCLIC PLASTICITY ANALYSIS

In addition to equilibrium and compatibility (strain-displacement) relations used
in elastic stress analysis (and not changed in form if strains are assumed to be small),
three concepts are required to formulate cyclic plasticity problems 2

(i) Initial Yield Criterion
A number of yield criteria' ' have been formulated, but only the maximum shear

of Tresca, and the distortion energy or octahedral shear of von Mises are used for normal
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ductile metals. For the more commonly used materials the von Mises criterion agrees
better with test data, and is mathematically simpler as it defines a single continuous
failure surface. This surface is expressed in terms of a function of the second invariant
(J2 = sa, ii) of the deviatoric stress tensor sii and can be written:

3 1f = (-i i 8i) -o0 = 0
2

where 0 is the initial yield stress in uniaxial tension
s= Oij - 6ii ckk/3, with stress tensor oaq and Kronecker delta 64
Okk - o'll + 0 22 + a33, using the tensor convention that repeated dummy

subscripts indicate summation

In 3-dimensional principal stress space, the von Mises criterion describes a cylindri-
cal surface, of radius a0 = ( si si) 3 with axis through the origin and equally inclined to
the three principal stress axes (Fig. 1). For plane stress (Os = 0), this surface intersects
the Ol, O2 principal stress plane in an ellipse.

(ii) Plastic Flow Law

Total increments in strain are assumed to be divisible into elastic and plastic frac-
tions:

= + d P

The direction of the plastic strain increment tensor, according to the associated flow
rule, is normal to the yield surface (requiring maximum plastic work on deformation):

Of
dtf! =dA O

where dA is a constant of proportionality. This is the normality condition and for a von
Mises material, is equivalent to the Prandtl-Reuss equations dtf = dA s8q.

(iii) Strain Hardening Rule

In many materials yield strength increases progressively with increasing plastic
strain. While the von Mises yield criterion and the normality flow rule for plastic strain
are generally accepted and adequately established by experiment, a similar consensus
does not exist for rules used to describe strain hardening. Simpler rules are preferred,
provided their behavioural description is reasonable, as more elaborate hardening models
lead to considerable complexity in finite element programs. Four main hardening rules
have been used, viz. isotropic, kinematic, Mroz or multiple surface models, and sublayer
or subvolume models.

(a) Isotropic Hardening

The simplest assumption is that material strengthens umiformly with increasing
plastic strain, irrespective of strain direction forward and reversed loading have equal
effects (Fig. 2). This implies that the yield surface radius expands uniformly in stress
space. maintaining shape, orientation, and origin of axis (Fig. 3). Isotropic hardening
does not satisfactorily model reversed or cyclic loading, but its implementation is simple
and for monotonic loading results are as good as for more complex models 5.

(h) Kinematic Hardening
When loading is reversed, most metals exhibit a reduced yield strength in the

reverse direction. known as the Bauschinger effect (Fig. 2). The kinematic hardening
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model formulated by Prager represents this effect by assuming that the yield surface
translates as a rigid body in stress space, maintaining its size, shape, and orientation
(Fig. 4). This translation, dai - is in the direction of the plastic strain increment, i.e.
normal to the yield surface. The Prager formulation is not invariant in a subspace
of reduced dimensions - it must be modified for a two dimensional system. Ziegler' 5

formulated an alternative definition of the yield surface translation, daii namely, that its
direction is the vector connecting the centre point (or origin) of the current yield surface
to the existing stress point. In most problems, the difference in the results from the
Prager and Ziegler formulations is negligible, with the Prager equations generally more
convenient to use. Both satisfactorily model reversed loading with elastic-perfectly
plastic behaviour, or when the degree of strain hardening is limited, and hardening
is reasonably linear. Difficulties arise at large reversed strains when the stress-strain
relation for the material is highly nonlinear, because there is no satisfactory rule for
relating hardening coefficient to cumulative strain.

(c) Mixed Isotropic-Kinematic Hardening

Mixed hardening formulations 7 ," have been developed combining isotropic and
kinematic hardening, which means that the yield surface both expands and translates.
By extending the scope of the kinematic model, better agreement with test data is ob-
tained for some materials. A particularly simple and readily implemented formulation
of mixed hardening has been developed and is presented below.

(d) Multi-Surface Models

Non-linear hardening, reduced in the uniaxial case to a piecewise linear stress-strain
curve, is represented by the Mroz and subvorume models. The Mroz model 9 comprises
a series of (initially concentric) yield surfaces, each related to a particular yield stress
corresponding to one segment of the curve. When plastic strain occurs, the surface
translates until it touches the next bounding surface, which is translated in turn. Contact
between the surfaces is maintained until unloading occurs (Fig. 5).

A similar piecewise linear modelling is achieved by the sublayer or subvolume
models 10-11 These postulate that the material comprises a number of subvolumes
(physically analogous to material grain structure). Each subvolume has elastic-perfectly
plastic properties with a different yield stress. All are subject to the same strain, with
their individual stresses combining to give total stress.

The Mroz and subvolume models result in the Masing description 12 of the Bausch-
inger effect, viz. that on reversed loading the shape of initial loading curve is maintained,
magnified by a factor of two. This is a satisfactory representation for many engineering
materials. More elaborate models 13,14, 23 have been formulated to describe fine de-
tails of behaviour, but generally these are too complex to implement in a finite element
computer program, or too restricted in the materials represented.

3. PLASTICITY EQUATIONS

Failure Criterion

A general form of the von Mises yield criterion, incorporating the various hardening
rules, can be expressed as:

f 3 (") - e((P) = (1)

where ii= 8ii - aii (2)
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and sii =aii - 6i o,/3 as previously defined. a.(cp ) is the yield stress as a function
of the plastic strain. The translation aij of the stress origin is also a function of plastic
strain, depending on the hardness model adopted, and determines hi, the translated
deviatoric stress.

Plastic Flow Equations

Strain Partitioning
dfi= dcf + dcf (3)

Normality Condition

dPd f =3d"dA (4)
caii 2 7

The proportionality constant dA is found by taking the inner product of equation (4):

2 d M!= 3 dA2

3 1) 'J 2O

so: dA dcd d) =dcP  (5)

For a von Mises material dA = dcp is equal to the strain in tuiaxial tension.

Strain Hardening
Isotropic a, = 0do', = Hd P

where H is the plastic slope in simple tension, so a, = ay, the yield stress in tension.

Kinematic da, = 0 so o , = o0, the initial yield stress.
dai = c dtf (Prager)
daii= d1 (o - ai) (Ziegler)

Equivalence with uniaxial tension requires that the constants c 2H, or

d = H dtp so with equations (4) and (5):
t'w

da= 84 H dtp (Prager) (6)

o'.

or: daii = dc (Ziegler) (7)

Mixed Hardening

The hardening effect H dP in equations for isotropic and kinematic hardening can
be divided into fractions p defining yield surface expansion (isotropic), and (I - p)
yield surface translation (kinematic). Notionally either the strain hardening rate H
or the plastic strain increment d1P can be so partitioned, and this makes subsequent
implementation in computer code particularly straightforward.

da, = pHd(i (8)

so: oa, = ea0 + p(ay - ea0 )

dai= (I - p)HdYp  (Prager) (9)
Ges
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dctii -a I*(I - p)HdEp (Ziegler)
as

Constitutive Equations

Constitutive equations relating increments of stress and elastic strain, using equa-

tion (3), can be written:
do, i = C Ck(dCk, - dn) (10)

where the elastic stiffness tensor is:

Ci7 t = 2G(6 ik 6 i + l b-ij 6 kt )ijkl 2v

with shear modulus G. Poisson's ratio v.
Constitutive equations for plastic deformation are derived by noting that during

plastic flow the stress point stays on the yield surface, so that df = 0 in equation (1):

f=Of a Of dcl + Ofd =

df= daa ij + o da,+0do,.= (1)OIi Oaqi

Substituting in equation (1) and using (2), (8) and the Prager result of (9):

3 -8i (daj - daii) - pHd E = 0
2 o',

P { _ P1- Hdf } - pHdc=02 a-, or,

with equations (3) and (10):

3 jjiF dkl- 3 ko JdA - HdA = 0 (12)

Since hij = 0, for an elastically isotropic material only the "diagonal" components

i = k, j = I of the tensor CEikl produce non-zero terms, and equation (12) can be
reduced 

to:

dA = Ski dtkI (13)
o, (1 + H/3G)

Using equations (4) and (13) with (10), with dummy subscripts k,l changed to m,n:

= CEId 3 8klsmn dtmn
do i 1 2 ,2 (I + H/3G)

= (CF 1 - Ct'kt)dkl (14)

By a reduction similar to equation (13), the plastic constitutive tensor becomes:

3G Aiskt (15)
ikl I + H3G 7

,



4. FINITE ELEMENT IMPLEMENTATION

Finite Element Analysis

For a continuum, the constitutive equation (14) can be used in standard finite
element equations of incremental form. Using matrix notation:

f BT(D - DP)B dVol bu = bF4  (16)

(K - KP)6u = bFA (17)

where K,K P are elastic and plastic structural stiffness matrices
bFA is vector of applied loads
B is displacement strain transformation matrix so bc = B 6u
D, D P are material elastic and plastic constitutive matrices,

corresponding to tensors CE P in equatio

Equation (17) provides an incremental solution for bu using the tangential stiffness
matrix (K - KP). Because K t is a function of stress, the solution is obtained by suc-
cessive Newton-Raphson approximations, and the stiffness matrix has to be re-evaluated
and reduced at each iteration.

Repeated matrix reductions can be avoided by re-arranging equation (16) so that
only the constant elastic matrix K need be decomposed, which is required once only
during the solution:

f BTD B dVol 6u = 6 FA + f BTDPB dVol bu (18)

K bu =6FA + 6Fp (19)

The plastic pseudo-forces 6Fp are found by noting that when equations (10) and (14)
are written in matrix form:

6u = (D - D")6t = D(6t - 6&p) (20)

Hence DPbe = D bep and since bf = B 6u the RHS integral in equation (18) becomes:

bFp f BTD dVol bEp (21)

Partitioning 6u = 6 1uE + 6UP in equation (19) leads to:

K(OUE + 6uP) = 6F.. + bFp (22)

The equation K 6uE = 6FA, is simply a scaled elastic solution which can be subtracted
from equation (22) giving:

K6up 6Fp (23)

In this equation 6 up is found by iterative solution, with successive approximations to
bFp given by equation (21).

Computer Programs

The commercial FE program package PAFEC was available at ARL as a general
purpose stress analysis, heat flow and dynamics program when this work commenced.

.. . . . -,.- - - - . - ,, m . md =,. m I mm m m8



Subsequently access to NASTRAN was acquired for special applications, and the plas-
ticity capabilities of both program packages are now briefly compared.

PAFEC uses the development just presented; a flow chart of the 1AFEC plasticity
routine is shown in Figure 6. This approach is simple, but at times it results in conver-
gence difficulties. NASTRAN by comparison uses the tangential stiffness approach of
equation (17), though a flexible strategy is employed by updating the matrix only after
an optimum number of iterations. Convergence is assured, but computational effort is
greater.

Regarding types of elements available for elasto-plastic problems, PAFEC is much
more versatile, and NASTRAN is highly restricted in its ability to model continua of
complex shape, typical of aircraft engine components. For 2--dimensional models, NAS-
TRAN has only straight-sided linear elements, with plastic conditions represented only
at the centroid. In three dimensions more capability is offered by linear brick elements
with 2 x 2 x 2 Gauss point integration, and equivalent triangular prism elements. By
comparison PAFEC has, as well as linear elements, quadratic and cubic isoparametric
elements in two and three dimensions, with 2 x 2 or 2 x 2 x 2 Gauss integration. Both
triangular and rectangular (or brick and prism) shapes are available, and the curved
shapes obtainable with isoparametric elements allow better modelling of practical com-
ponents.

Hardening rules available are similar. Both programs have isotropic and kinematic
models. NASTRAN also offers "mixed" hardening, but this is restricted to the special
case of p = 0.5 in equations (8) and (9), which implies that the yield stress always
remains equal to the initial value despite reversal of loading. The writer has extended
PAFEC code to incorporate the more general case of mixed hardening described by
these equations. Nonlinear hardening is available with the isotropic model, but with
kinematic hardening PAFEC expresses the yield surface translation in an equation of
the form ai = 2 Ht, which requires constant H (i.e. linear hardening) when integrating
equation (6).

5. COMPARISON OF SOLUTIONS

As a preliminary to using PAFEC in practical analysis of cyclic plasticity, suit-
able verification problems were sought. The only reasonably accessible example which
included linear strain hardening, was the proving ring problem ing ; an alternative so-
lution to this problem showing slightly different results is also found in . The same
problem with mixed hardening is treated in 7 . The proving ring and its material prop-
erties are shown in Figure 7, and preliminary results with PAFEC level 5.2 are shown
in Figuire 8.

The initial results reveal significant discrepancies, and when after discussion no
satisfactory reason could be found 1 a detailed examination of PAFEC code was un-
dertaken. Various differences between implemented code and plasticity equations were
found (listed in Appendix B), most of them having only minor effects on results. However
changes in the way of satisfying convergence, either by imposing stricter requirements,
or by adopting a self-correcting scheme 17, 1, produced significant changes in results
for this problem. It is expected that updated levels of PAFEC code will incorporate
appropriate modifications L6

Alternative FE programs such as NASTRAN were not accessible at ARL at this
time. anti no satisfactory Iul)lished results for suitable test cases were available. So
in order to test the modifications, original theoretical solutions were developed for test
problems, given in Appendix A. Starting with the simple case of a rectangular beam in

--9 -,-w mmmmm m mm m m[ ]m



pure bending, solutions are extended to a curved rectangular bar in pure bending, and
finally the proving ring which is a curved bar under both bending and tension.

Results for the straight beam and curved bar in pure bending are shown in Figure
9, and for the proving ring in Figure 8. In all cases excellent agreement is obtained
between the modified PAFEC and the theoretical solutions. NASTRAN had by this
time become available at ARL, so it was used for the proving ring, giving a solution
virtually coincident with modified PAFEC.

Cyclic loading for the proving ring is shown in Figure 10, comparing isotropic,
kinematic and mixed hardening (for p = 0.25), with results qualitatively similar to
those given in 6 .

6. APPLICATION AND DISCUSSION

Simple semi-empirical rules for dealing with plastic deformation at stress concen-
trations when the plastic properties of the material are known, have been developed by
extending solutions obtained for particular geometries to more general cases. At a notch
root with shear stresses, Neuber 23 derived the relation:

t a(K? (24)
Kt2 = KK( or K, = K02(4

where K, = theoretical elastic stress concentration factor

K, = stress factor a/&
K,= strain factor t/t

Stowell 24 obtained a series solution for elasto plastic deformation around a hole
in an infinite plate umder iuiaxial stress, which when modified to cover general stress
concentrations 25 is expressed:

K0
K, = (Kt - 1) K(25)

Compressor and turbine discs subject to rotational, other mechanical and possibly
also thermal loading are generally the most critical aircraft engine components subject
to low cycle fatigue. A major failure source is at holes in the disc web, where stress
conditions surrounding the hole are substantially biaxial.

For a circular hole in an infinite thin plate, where stress conditions resemble those
in a turbine disc. finite element, Neuber and modified Stowell solutions are compared.
Principal stress ratios (72 /ej = 0 (uniaxial), 0.5 and 1.0 (pure biaxial) are shown in
Figures 11. 12 and 13 respectively. Little difference between the three stress solutions
can be seen, largely because of the low plastic hardening slope (typical Ti-8-1-1 material
properties were used). Strain solutions differ significantly, depending on the principal
stress ratio. For uniaxial stress (0 2 = 0, Kt = 3.0), the modified Stowell and finite
element solutions coincide, at least for lower values of plastic strain (as would be ex-
pected, since the Stowell equation derives from a series solution for this case). As stress
increases, the Stowell equation tends to overestimate strain, and the Neuber solution is
similar, excepting that it overestimates strain throughout the stress range.

As stresses become more nearly biaxial, both Neuber and n.dified Stowell rules
continue to overestimate strain. With pure biaxial stresses ( r2 = (I, Kt = 2.0),
Neuber and Stowell give similar moderate o(verestimates at low plastic strains, with
Stowell giving much higher excess estimates of strain at higher stresses. Fortunately
such estimates lead to c(nservative LCF life pre(lictions when using the Coffin Manson
law.
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The limitations of the Neuber and modified Stowell rules have been considered
elsewhere 21 . Generally speaking they overpredict plastic strain, but this depends on
the particular geometry. Most investigations have been concerned with their accuracy
for LCF fatigue life prediction 19 . 20 rather than for strain estimation, and in this respect
they are widely accepted as useful design rules.

A thin disc with negligible stresses through its thickness has been assumed in the
current analysis, and the effect of biaxial stresses in the thickness direction at the hole
surface has not been considered. With surface biaxial stresses a correction should be
applied , which tends to reduce predicted strains. The preliminary applications de-
scribed herein are intended to be followed by a fuller explorations of thick discs, plastic
crack growth and other practical LCF applications in the next phase of this investigation.

7. CONCLUSIONS

Application of PAFEC to cyclic elasto-plastic calculation has been established at
ARL. Careful investigation after finding discrepancies between results and published
solutions led to the development and verification of modified code. This code extended
the available strain hardening models by adding mixed hardening, for which a simple
formulation was developed, to the existing isotropic and kinematic hardening rules.
Verification entailed the determination of original alternative solutions to problems of
bending and stretching of straight and curved bars, the latter exemplified by a proving
ring for which several alternative FE solutions were available.

Sample applications were made to holes in plates with biaxial strets similar to disc
webs, and results compared with the Neuber and modified Stowell rules, commonly used
for design life estimation. Compared with finite element solutions, these rules tend to
overestimate strain in biaxial stress conditions, which would lead to a conservative life
estimate.

A further complexity ensues when the disc or plate is of sufficient thickness that
stress levels are significant in the thickness direction. Stress conditions at the hole
surface are then biaxial, and corrections need to be applied to give equivalent uniaxial
strains. Multiaxial fatigue is a complex topic and is not considered here; it has been
addressed in numerous papers elsewhere 2 . Practical discs generally exhibit biaxial and
often triaxial effects. and analysis of these discs is proposed in the next phase of this
work.
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APPENDIX A - STRAIGHT AND CURVED BARS

Pure Bending of Straight Rectangular Bar

Adopting the standard beam assumption that plane sections remain plane, and
using notation as in Figure 14, strains are given by:

2z _
=c,.ox - and h - ,,

if the elastic region is of depth g, yield strain t.. Stress-strain relations for a bilinear
material with elastic modulus E, total plastic modulus H are:

- 5 < a = E( (26)

~> y } d'=(E- H)t1 + H( (27)

Moment M per unit width of bar is:

M= 2 az dz

= 2 Et hna 2xdZ+2 {(E - H)ty + H,,,.z2x dZ

At initial yield My = Etyh2 /6 so the integral becomes:

M 1 H Y taMv 2(
1

- E C2 3 az.' ..E'

Bending and Stretching of Curved Bar

Geometry of Deformation
A small segment do of a rectangular bar with circular centreline is shown in Fig-

ure 15, and the following geometrical relations apply:

Total rotation of face w di + cdb (29)

where t is uniform strain, dci is rotation, so:

dw da
=-- +i = +E (30)

Rotation of the bar centreline is greater by the increase of shear deflection from -Y to
- + d-y, so the equation for change of curvature is:

ro{do(1 + t) + da + d-y} = rdO(1 + i)

so since i is small:

r ro r( + t) d

I + ) (31)

= (3d)



Stresses and Strains

Fibre strain I rd + (r - r)d.
rdo

=c+fl( - (32)
r

Yield in tension and compression occurrs where t = + ty, with corresponding radii:

;; } (33)
re )9+± t

Fibre stresses are found with equations (26) and (27):

Elastic region r, S r < r, a = Et

=Ep+#(Ir), (34)

Plastic region, assuming r, > r,.

Tension r > r a = ±(E - H)(V + H(( +fl) -Hfle (35)
('onpression r < r, r

Force aid moment per unit width are found by integrating stress over the cross section.
using the appropriate equation for elastic or plastic stress regions.

F = jadr (36)

M = j a rdr (37)

Explicit integrals for radius limits a, , can be found from expressions (34) or (35):

Elastic Region Forces F = E[(fl + )r - fir log, rj]' (38)

Elastic Region - Moments M = E[(#l + t)r 2/2 - flrrlbo (39)

Plastic Region Forces F = +(E- H) + H( + ()}r - Hfrlogr] (40)

Plastic Region Moments M = [{+(E - H), + H(fl + [)}r 2 /2 - Hflrr] (41)
L Ja

Using radius limits found from equation (33), values of F and M for given #? and t can
be found from equations (38) - (41). To find / and c as functions of F and M requires
solution of nonlinear simultaneous equations. Since the diagonal terms predominate (F
is principally a function of c and M of fl), simple linear inverse interpolation can be
used. (A Newton-Raphson solution was first programmed but was not necessary.)

Pure Bending of Curved Bar
Shear is zero, and for each value of fl, a value of i is found giving no net force

(F = 0). The resultant value of M is expressed in the form:

MM = f ( ai/ia e t (42)
where M., fly are values of moment and rotation at initial yield (at the intrados).



Circular Proving Ring
For symmetrical loading, the ring can be represented by one quadrant (Fig. 16).

Forces and moments at angle 0 for load 2P are:

Normal Force F = Pcoso (43)

Shear Force V = -Psin# (44)

Moment M=MO+Pfcoso (45)

Deflection Equations
(i) Rotation

Symmetry requires a boundary condition such that there is no net rotation over the
quadrant:

fi do 3=(9 +E)do = 0 (4)

The value of Mo for given P can be found when this integral is satisfied.

(ii) Centreline Deflection of Ring
Geometry of deformed ring is shown in Figure 17, and neglecting second order

terms: 1 _d$

Initial curvature -

ds

I do+Aod_ S2d
Deflected curvature +

rt is + Ads ds (1 - ujr)

I d2u

Change in curvature 1_ 1 = r +s 2  1
r, r I - U/f" f

I d 2 + U) (47)

Using equation (31), and noting that opposite sense of M in Figures 15 and 16 reverses
signs, the differential equation for deflection becomes:

1 d 2u 1 d'
r2 ( do2 + U) = r(I - )(W + )

d 2 u= r( - i)(# + d-) (48)

Shear deflection -y is small and is assumed equal to the elastic deflection:

"= A
where xt is the shape coefficient for shear and A cross-se-tional area. Substituting V
from equation (44):

d-y _ -P cos- (49)
do GA

so the deflection equation becomes:
d2 u co
d 2 + U = r(1 - )(fl -PcOS ) (50)

d02 GA
The differential equation (50) is integrated using any standard numerical integration
technique, with terms i and fl for each angle 0 calculated as previously indicated.



APPENDIX B - MODIFICATIONS TO PAFEC CODE

The modifications listed were applied to PAFEC plasticity code at level 5.2. It
is expected 17 that later releases of PAFEC will include these or similar modifications
having the same effect.

(i) Damping. When oscillatory behaviour occurs and convergence is uncer-
tain, a damping routine may be invoked. This may lead to incorrect implementation
of the Prandtl-Reuss equations and has been discarded. Section (iii) describes other
means used for securing convergence.

(ii) Kinematic Hardening. Implementation of the Prandtl-Reuss equations
has been modified to properly incorporate yield surface translation.

(iii) Convergence. Convergence is accelerated and stability improved by
adaptive adjustment of a convergence parameter.

(a) Convergence is accelerated when too slow.
(b) When maximum error increases (instability), previous converged values
are restored and convergence slowed until error reduces.
(c) After convergence is re-established, it is again accelerated to hasten at-
tainment of solution within tolerance.

(iv) Iteration Loop. Exit conditions have been changed so that a self-
correcting load adjustment 18 is applied at the start of the next load increment. This
greatly improves solution accuracy for given error tolerance, and may allow tolerance
level to be relaxed while maintaining satisfactory accuracy.

(v) Mixed Hardening. Mixed kinematic -isotropic hardening with variable
proportioning has been included.
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PLASTIC STRESS/STRAIN CONCENTRATIONS
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